

TEACHING PLAN

BUILDING ENGINEERING VOCATIONAL EDUCATION (BEVE) STUDY PROGRAM CIVIL ENGINEERING DEPARTMENT, FACULTY OF ENGINEERING, UNIVERSITAS NEGERI PADANG

UNE										
					CRE	DITS		VERSI		
	CODE COURSE CLUSTER			Theo	Prac	SEM	ON			
					ry	tice				
Engineering Mechan	ic	SIP1.61.2304	Study Pr	ogram Compulsory Course	3	0	2	1		
Lecturer in Charge			•		Lectur	er in C	harge			
		I	Ors. Junima	an Silalahi, M.Pd.						
					Dre In	ıniman S	Silalahi,	M Pd		
Remarks		Dean of Facul	lty of	Head of Civil Engineering						
<u>remarks</u>		Engineerin	•	Department Department	C	oordina	tor of B	EVE		
				•						
		Dr. Fahmi Rizal, M.Pd., M.T Faisal Ashar, Ph.D.			Drs. Revian Body, MSA.			MSA.		
		NIP. 195912041985031004 NIP. 19750103 200312 1001						03 1003		
Program Learning	Program Learning Outcome									
Outcomes	1. The ability to apply	basic knowledge	of science	e (mathematics, natural sciences) and c	ther m	ultidisc	iplinary		
	knowledges which are	e the basis of Build	ling Engine	eering Vocational Education field is	ld in carrying out its professional					
	work (Knowledge and	and Understanding).								
	1.1. Able to show goo	d understanding an	d to imple	ment the basic concept of mathema	tics to s	olve va	rious p	roblems		
	in building engine	_	1	1			1			
		· ·	to impleme	ent the basic concept of Physics and	1 Chem	istry (na	atural so	ciences)		
	in building engine	_	io impioni	and the caste concept of I hysics and	. CII C III	, (III	araiai D	21011000)		
		nderstanding and able to implement the basic concept of basic engineering (Mechanics,								
		rings) in building en								
	2. The ability to think of	critically and creati	vely in ide	entifying, formulating, problem so	lving, a	ind eva	luating	various		

problems in building engineering vocational education field by using the most appropriate and effective scientific method (Engineering analysis, investigations and assessment).

- 2.1. Able to identify various technical problems in building engineering field.
- 2.2. Able to analyze various technical problems in building engineering field.
- 2.3. Able to evaluate various technical problems in building engineering field.
- 2.4. Able to communicate Engineering Analysis, Investigation and Assessment materials to students / training.
- 3. The reliable ability to plan, implement, and supervise the works in building engineering field. (Engineering design).
 - 3.1. Able to implement shop drawings in collaboration with various related parties.
 - 3.2. Able to manage building engineering works by paying attention to environmental, social, health and safety aspects.
 - 3.3. Able to supervise the implementation of building engineering woks.
 - 3.4. Able to communicate Engineeering Design material to students.
- 4. The reliable ability to plan, implement, and evaluate the learning process in Building Engineering Vocational Education study program (Education design).
 - 4.1. Able to plan the curriculum and learning process in building engineering field.
 - 4.2. Able to carry out, control, evaluate and improve the quality of the learning process.
 - 4.3. Able to develop an effective, efficient and interesting teaching media.
- 5. The ability to adapt to and innovate towards the development of science and technology and implement it into educational and professional work goals by considering non-technical risks that may occur (Engineering practice).
 - 5.1. Able to innovate and develop the technology in the field of building engineering by considering social, economic and environmental aspects.
 - 5.2. Able to analyze environmental conditions in the planning, implementation and supervision of buildings.
 - 5.3. Implement information technology and computers into the planning, implementation, and supervision processes of buildings.
- 6. Social and managerial competencies, collaboration and effective communication skills, entrepreneurial character, environmental insight, and awareness of the importance of lifelong learning (Transferable and softskill).
 - 6.1. Able to work creatively, innovatively, collaboratively, carefully, responsibly, and responsive to environmental

	change.										
	6.2. Have curiosity and critical thinking, open-minded, and objective.										
	6.3. Able to communicate effectively, and to collaborate in a team work.										
Course Learning	Course Learning Outcomes (CLO): Engineering Mechanic										
Outcomes											
	Course LO	PLO									
	1. Able to basic concepts of indefinite static structures	1.1, 1.2, 1.3									
	2. Able to calculate continuous beam reaction moment using the Clapayron method	1.1, 1.2, 1.3									
	3. Able to calculate continuous beam reaction moment using the Cross method	1.1, 1.2, 1.3, 6.1, 6.2, 6.3									
	4. Able to calculate the moment of reaction for the portal without swaying using the Cross method	1.1, 1.2, 1.3, 6.1, 6.2, 6.3									
	5. Able to calculate the moment of reaction to the portal swaying using the Cross method	1.1, 1.2, 1.3, 6.1, 6.2, 6.3									
Course	This course provides knowledge about the basic concepts of indefinite static, beam deflection, and	nalysis of continuous beam									
Description	and portal structures using the Clayperon method, and the moment distribution method (Cross).	nalysis of continuous beam									
	and portal structures using the Clayperon method, and the moment distribution method (Cross). Main:	nalysis of continuous beam									
Description	and portal structures using the Clayperon method, and the moment distribution method (Cross).	nalysis of continuous beam									
Description	and portal structures using the Clayperon method, and the moment distribution method (Cross). Main: 1. Juniman Silalahi, 2010, <i>Mekanika Struktur Jilid 2</i> , Penerbit UNP Press, Padang Supporting:										
Description	and portal structures using the Clayperon method, and the moment distribution method (Cross). Main: 1. Juniman Silalahi, 2010, <i>Mekanika Struktur Jilid 2</i> , Penerbit UNP Press, Padang										
Description	and portal structures using the Clayperon method, and the moment distribution method (Cross). Main: 1. Juniman Silalahi, 2010, <i>Mekanika Struktur Jilid 2</i> , Penerbit UNP Press, Padang Supporting:										
Description	 and portal structures using the Clayperon method, and the moment distribution method (Cross). Main: Juniman Silalahi, 2010, Mekanika Struktur Jilid 2, Penerbit UNP Press, Padang Supporting: Istimawan Dipohusodo, 2001, Analisis Struktur Jilid 1, Penerbit PT Gramedia Pustaka Utama 										
Description	 and portal structures using the Clayperon method, and the moment distribution method (Cross). Main: Juniman Silalahi, 2010, Mekanika Struktur Jilid 2, Penerbit UNP Press, Padang Supporting: Istimawan Dipohusodo, 2001, Analisis Struktur Jilid 1, Penerbit PT Gramedia Pustaka Utama Daniel L. Schodek, 1999, Struktur, Penerbit Erlangga, Jakarta. 										
Description	 and portal structures using the Clayperon method, and the moment distribution method (Cross). Main: Juniman Silalahi, 2010, Mekanika Struktur Jilid 2, Penerbit UNP Press, Padang Supporting: Istimawan Dipohusodo, 2001, Analisis Struktur Jilid 1, Penerbit PT Gramedia Pustaka Utama Daniel L. Schodek, 1999, Struktur, Penerbit Erlangga, Jakarta. E.P. Popov, 1989, Mekanika Teknik, Penerbit Erlangga, Jakarta. 										
Description	 and portal structures using the Clayperon method, and the moment distribution method (Cross). Main: Juniman Silalahi, 2010, Mekanika Struktur Jilid 2, Penerbit UNP Press, Padang Supporting: Istimawan Dipohusodo, 2001, Analisis Struktur Jilid 1, Penerbit PT Gramedia Pustaka Utama Daniel L. Schodek, 1999, Struktur, Penerbit Erlangga, Jakarta. E.P. Popov, 1989, Mekanika Teknik, Penerbit Erlangga, Jakarta. Chu-Kia Wang. 1989. Struktur Statis Taktentu. Penerbit Erlangga: Jakarta. 										
Description	 and portal structures using the Clayperon method, and the moment distribution method (Cross). Main: Juniman Silalahi, 2010, Mekanika Struktur Jilid 2, Penerbit UNP Press, Padang Supporting: Istimawan Dipohusodo, 2001, Analisis Struktur Jilid 1, Penerbit PT Gramedia Pustaka Utama Daniel L. Schodek, 1999, Struktur, Penerbit Erlangga, Jakarta. E.P. Popov, 1989, Mekanika Teknik, Penerbit Erlangga, Jakarta. Chu-Kia Wang. 1989. Struktur Statis Taktentu. Penerbit Erlangga: Jakarta. J. Kwantes, 1985, Mekanika Bangunan 1, Penerbit Erlangga, Jakarta. 										
Description	 and portal structures using the Clayperon method, and the moment distribution method (Cross). Main: Juniman Silalahi, 2010, Mekanika Struktur Jilid 2, Penerbit UNP Press, Padang Supporting: Istimawan Dipohusodo, 2001, Analisis Struktur Jilid 1, Penerbit PT Gramedia Pustaka Utama Daniel L. Schodek, 1999, Struktur, Penerbit Erlangga, Jakarta. E.P. Popov, 1989, Mekanika Teknik, Penerbit Erlangga, Jakarta. Chu-Kia Wang. 1989. Struktur Statis Taktentu. Penerbit Erlangga: Jakarta. J. Kwantes, 1985, Mekanika Bangunan 1, Penerbit Erlangga, Jakarta. Soemono, 1985, Ilmu Gaya, Penerbit Djambatan, Bandung. 										
Description	 Main: Juniman Silalahi, 2010, Mekanika Struktur Jilid 2, Penerbit UNP Press, Padang Supporting: Istimawan Dipohusodo, 2001, Analisis Struktur Jilid 1, Penerbit PT Gramedia Pustaka Utama Daniel L. Schodek, 1999, Struktur, Penerbit Erlangga, Jakarta. E.P. Popov, 1989, Mekanika Teknik, Penerbit Erlangga, Jakarta. Chu-Kia Wang. 1989. Struktur Statis Taktentu. Penerbit Erlangga: Jakarta. J. Kwantes, 1985, Mekanika Bangunan 1, Penerbit Erlangga, Jakarta. Soemono, 1985, Ilmu Gaya, Penerbit Djambatan, Bandung. J.D. Todd, 1984, Teori dan Analisis Struktur, Penerbit Erlangga, Jakarta 										

Team Teaching	
Assessment	MID Semester Exam, Final Semester Exam, Independent Task & Group, Assignments, Group Presentations.
Prerequisite	N/A

TEACHING MATERIAL

Week	Expected Competency	Study Material	Teaching Method and Strategy	Assignment	Teaching Method and Strategy	Reference
(1) (2)	Have Knowledge about beam deflection	Beam deflection with the moment area method and the second load method: - Deflection - The angle of inclination of the deflection	Lecturer, discussion, question and answer, exercise	- Group Discusse - Homework	Able to calculate deflection and beam deflection angle correctly	RU-1, RP-1, RP-2, RP-3, RP-4, RP-5, RP-6, RP-7, RP-8
(3) (4)	Ability to apply deflection equations and deflection tilt angles to indefinite static beams	Application of the deflection equation and the angle of deflection to an indefinite static beam	Lecturer, discussion, question and answer, exercise	- Group Discusse - Homework	Able to apply the deflection equation and the deflection angle of an indefinite static beam correctly	RU-1, RP-1, RP-2, RP-3, RP-4, RP-5, RP-6, RP-7, RP-8
(5)	Ability to calculate the moment of continuous beam reaction with the three moment equation method (Clapeyron)	Calculating the moment of continuous beam reaction with the three moment equation method (Clapeyron)	Lecturer, discussion, question and answer, exercise	- Group Discusse - Homework	Able to calculate the moment of continuous beam reaction using the three moment equation method (Clapeyron) correctly	RU-1, RP-1, RP-2, RP-3, RP-4, RP-5, RP-6, RP-7, RP-8
(6) (7)	Ability to calculate the continuous beam	Calculating the continuous beam reaction	Lecturer, discussion, question and answer,	- Group Discusse - Homework	Able to calculate reaction moment	RU-1, RP-1, RP-2, RP-3,

Week	Expected Competency	Study Material	Teaching Method and Strategy	Assignment	Teaching Method and Strategy	Reference
	reaction moment with the Cross method	moment due to the load combination with the Cross method	exercise		on continuous beam using the Cross method correctly	RP-4, RP-5, RP-6, RP-7, RP-8
(8)	MID Semester Exam					
(9) (10)	Ability to calculate reaction moments on unshakeable portals using the Cross method	Calculating the reaction moment of the shaking portal due to the combined load using the Cross method	Lecturer, discussion, question and answer, exercise	- Group Discusse - Homework	Able to calculate reaction moments on shaking portals correctly	RU-1, RP-1, RP-2, RP-3, RP-4, RP-5, RP-6, RP-7, RP-8
(11) (12) (13)	Ability to calculate reaction moments on a single swing portal using the Cross method	Calculating the reaction moment of single swing portal due to combination load using the Cross method	Lecturer, discussion, question and answer, exercise	- Group Discusse - Homework	Able to correctly calculate reaction moments on single swing portals	RU-1, RP-1, RP-2, RP-3, RP-4, RP-5, RP-6, RP-7, RP-8
(14) (15)	Ability to calculate reaction moments on multiple swing portals using the Cross method	Calculating the reaction moment of multiple oscillation portals due to the combined load using the Cross method	Lecturer, discussion, question and answer, exercise	- Group Discusse - Homework	Able to correctly calculate the reaction moment of multiple sway portals	RU-1, RP-1, RP-2, RP-3, RP-4, RP-5, RP-6, RP-7, RP-8
(16)	Final Semester Evaluat	ion (Evaluation which is in	tended to find the final acl	hievement of student lea	rning outcomes)	1

Notes:

Relations of CLO and PLO with Assesment Method

CID1 (1 110)	A	Weight		PLO-1	L		PLC) -2			PLO	O -3			PLO -4	1		PLO -5	5		PLO -6	5
SIP1.61.1102	Assesment	(%)	1	2	3	1	2	3	4	1	2	3	4	1	2	3	1	2	3	1	2	3
CPMK-1,2	MID Exam. 1	5																				
CPMK-3,4	MID Exam. 2	5																				
CPMK-5	MID Exam. 3	10																				
CPMK-6,7	MID Exam. 4	15																				
CPMK-9,10	Final Exam.1	10																				
CPMK-11,12,13	Final Exam.2	10																				
CPMK-14,15	Final Exam.3	15																				
Assignment		20																				
Presence		10																				
TOTAL		100																				

Assesment Components

Mid-Semester Exam :35 %

Final Exam : 35 %

Assignment : 20 %

Presence : 10 %

Total : 100 %

Description of Assessment Level

	Excellent	Good	Satisfy	Fail
Description	Able to describe correctly and completely	Able to describe correctly but incomplete	Able to describe but less clear and incomplete	Unable to describe
Formulation	Able to formulate correctly and completely	Able to formulate correctly but incomplete	Able to formulate but less clear and incomplete	Unable to formulate
Calculation	Able to calcutate correctly and completely	Able to calculate correctly but not complete	Able to count but less clear and incomplete	Unable to calculate
Analysis	Able to analyze correctly and completely	Able to analyze correctly but incomplete	Able to analyze but less clear and incomplete	Unable to analyze

Assessment System

Sco	ore Range	Grade Letter	Grade Point	Notes	Score Range	Grade Letter	Grade Point	Notes
8	35 – 100	A	4.0	Exceptional	55 - 59	C	2.0	Quite Satisfactory
8	80 - 84	A-	3.6	Excellent	50 - 54	C-	1.6	Poor
7	75 – 79	B+	3.3	Very Good	40 - 49	D	1.0	Very Poor
7	70 – 74	В	3.0	Good	≤ 39	E	0.0	Fail
6	65 - 69	B-	2.6	Fairly Good	-	T	- -	Delayed
6	60 - 64	C+	2.3	Satisfactory				

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

UNIVERSITAS NEGERI PADANG JURUSAN TEKNIK BANGUNAN

Alamat: Jl. Prof. Dr. Hamka, Kampus UNP Air Tawar, Padang 25131 Telp. (0751) 7055644, Fax (0751) 7055628, website: www.ft.unp.ac.id, e-mail: info@ft.unp.ac.id

MID SEMESTER EXAM

Course : Engineering Mechanic

Code / Credit : SIP1.61.2304 Type of Exam : Open Book

Lecturer : Drs. Juniman Silalahi, M.Pd.

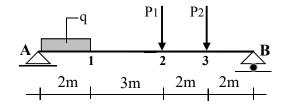
Time Allocation : 120 minuets

Maximum Grade : 100

No Question Weight

You are given a simple block as shown in the picture. 1.

Asked:


1. Calculate the support reaction

30

30

40

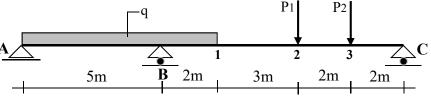
- 2. Calculate and paint the bending moment diagram
- 3. Calculate the slope angle of the deflection on supports A and B
- 4. Calculate the deflections at points 1, 2, and 3
- 5.

$$q = 4 \text{ kN/m}$$

$$P_1 = 6 \text{ kN}$$

$$P_2 = 8 \text{ kN}$$

2. The indefinite static beam is known as in the picture.


Asked:

Calculate the MA and MB using the slope angle of the deflection formula.

$$P_2 = 8 \text{ kN}$$

It is known that an indefinite static beam is known as in the picture.

If q = 4 kN / m', and P1 = 6 kN, P2 = 8 kN. Calculate MB with 3. the three-moment equation method and draw a diagram of the shear force and bending moment.

NEGO NEGO

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

UNIVERSITAS NEGERI PADANG JURUSAN TEKNIK BANGUNAN

Alamat: Jl. Prof. Dr. Hamka, Kampus UNP Air Tawar, Padang 25131 Telp. (0751) 7055644, Fax (0751) 7055628, website: www.ft.unp.ac.id, e-mail: info@ft.unp.ac.id

FINAL SEMESTER EXAM

Course : Engineering Mechanic

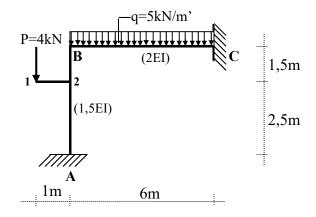
Code / Credit : **SIP1.61.2304**Type of Exam : Open Book

Lecturer : Drs. Juniman Silalahi, M.Pd.

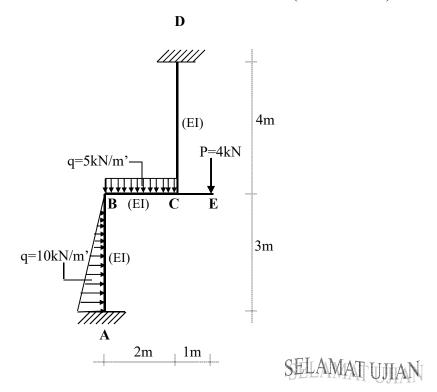
Time Allocation : 120 minutes

Maximum Grade : 100

No Question Weight


It is known that the structure of the rod with an indefinite static angle with shape,

1. dimensions, and loading as shown in the figure.


50

Asked:

- a. Calculate the reaction moment at the end of the rod / node with the Moment Distribution method (Cross method).
- b. Calculate and draw diagrams of shear forces, normal forces, and bending moments with the help of equilibrium static equations.

2. It is known that the structure of the rod with an indefinite static angle with shape, dimensions, and loading as shown in the figure. Calculate the reaction moment at the end of the rod / node with the Moment Distribution method (Cross method).

S HE CO

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

UNIVERSITAS NEGERI PADANG JURUSAN TEKNIK BANGUNAN

Alamat: Jl. Prof. Dr. Hamka, Kampus UNP Air Tawar, Padang 25131 Telp. (0751) 7055644, Fax (0751) 7055628, website: www.ft.unp.ac.id, e-mail: info@ft.unp.ac.id

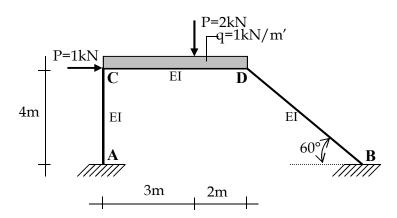
Assigment

Course : Engineering Mechanic

Code / Credit : **SIP1.61.2304**

Type of Task : Discussion and Group Presentation Lecturer : Drs. Juniman Silalahi, M.Pd.

Time Allocation : 60 minutes


Score : 100

Group Question Maximum

Grade

1. It is known that the structure of a single swaying portal with the shape, dimensions and loading as shown in Figure. Calculate the reaction moments at the fulcrum and vertices using the Moment Distribution (Cross) method, and determine the internal forces and draw the diagram.

100

